講演大会セッション(委員専門分野)

新分野	大分類	中分類	Nic		+_¬_к
オハノノ生ア	人儿規	1 甲刀規	No	<u>セッションキーワード</u>	キーワード 専門教育、共通教育、企業での教育、生涯教育、小・中・高校生への教育、カリキュラ
1分野			1.1	教育	等门教育、共通教育、近果での教育、生涯教育、小・中・局校生への教育、カリキュラム、授業の実際、教材・教育の評価、社会人教育
			1.2	歴史·材料考古学	金属学・材料科学の歴史、金属技術の歴史・変換、材料考古学、文化財保存
	1 **オ**() レジナイン	**オ**! ト ナナ ・今	1.3	技術革新・技術伝承	IoT、マテリアルインターフェース、マテリアルソフトエンジニアリング、材料情報、知的所有権、その他の金属学・材料学に関連した新分野・境界分野
	1.材料と社会	材料と社会	1.4	環境	LCA、リスクマネージメント、資源経済、環境・資源政策、材料の環境信頼性評価、製造物責任、環境低負荷材料、易リサイクル材料・設計、易解体設計、マテリアルセレクション、省材料設計、高寿命材料・設計、材料のリサイクルシステム、材料資源環境システム、再資源化用途開発、土壌浄化、環境修復
			1.5	ダイバーシティ	男女共同参画、LGBTI、国際化、学際協力、世代間・業種間融合
			1.6	新領域・その他	
	12.先進機能	先進機能材料	12.1	萌芽材料	
	材料		12.2	新領域・その他	
	2.物性	物性	2.1	磁気機能・磁気物性	磁気的性質,磁気光学的性質,電子状態,熱磁気効果(スピンゼーベック効果、 異常ネルンスト効果,磁気熱量効果,磁気ハイパーサーミア等),核物性等
			2.2	半導体機能・電気物性	誘電的性質,光学的性質,電子輸送、薄膜・表面・界面物性、熱的性質(ゼーベック効果,ベルチェ効果等),原子輸送,金属絶縁体転移等
			2.3	構造物性	結晶成長、結晶構造、準結晶構造、非晶質固体構造、格子ダイナミクスと安定性、 相転移(変態)、不整合・整合構造,格子欠陥,粒界等
			2.4	物性評価	照射効果、ナノスケール量子効果、トンネル効果、メスバウアー効果、核磁気共鳴、分
			2.5	新領域・その他	光・発光・回折一般等
	9.電気·磁気 関連材料	電気・電子・光関連材料	9.1	伝導·実装材料	電気伝導材料、電極材料, 電子実装材料、配線材料、マイクロ接合材料, フラーレン, カーボンナノチューブ, 熱伝導材料等
2分野			9.2	半導体・誘電体材料	半導体材料、誘電体材料、圧電体材料、センサー材料、太陽電池、High-k材料, 低次元物質,ナノ粒子・(超)微粒子,原子クラスター等
			9.3	光·電磁波関連材料	光学結晶材料、光記録材料、液晶材料、光ファイバー材料、光学ガラス材料、テラヘルツ等
			9.4	強相関電子系材料	ルジ寺 超伝導材料,トポロジカル絶縁体,強相関電子系材料,マルチフェロイック材料等
		磁性材料	9.5	ソフト・ハード磁性材料	ソフト磁性材料(高透磁率材料(合金系、フェライト系、アモルファス、ナノ結晶等)、永久磁 石材料(希土類系、合金系、フェライト系等)、電波吸収体・ノイズ抑制体材料等
			9.6	スピントロニクス・ナノ磁性材料	磁気抵抗効果(AMR、GMR、TMR等)材料、スピンメモリー・センサー材料、スピンカロリトロニクス材料、スピン注入技術、スピン流制御技術、スピン(軌道)トルク制御技術、磁気記録・磁気デバイス用材料、磁性(超)薄膜・多層膜・磁性金属人工格子、磁気スキルミオン等
			9.7	磁気機能材料	磁歪材料、磁気冷凍材料, フラストレーション材料、反強磁性材料, 相転移誘起材料(磁場誘起相変態等)等
			9.8	新領域・その他	
	3.組織	相安定性·相 変態		熱力学・状態図・相平衡	熱力学、状態図、相平衡、準安定、非平衡、相転移、金属間化合物、規則-不規則転移、磁気転移等
			3.2	拡散·相変態	拡散、偏析、析出、拡散変態、規則-不規則変態、不連続析出、粒界·相界面上析出等
			3.3	マルテンサイト変態・変位型相変態	マルテンサイト変態,変位型相変態(ベイナイト変態含む),形状記憶・超弾性材料,磁性形状記憶合金,TWIP・TRIP,エージング・テンパリング,双晶変形,熱・応力・磁場・電場誘起相変態,組織制御,組織形成と機械的性質,プロセッシング(粉末冶金・複合材料含む),SMAアクチュエータ・応用,マルテンサイト変態に関わる材料機能(ダンビング,磁気・弾性熱量効果等)
			3.4	合金・アモルファス・準結晶	アモルファス、金属ガラス、準結晶、高エントロピー材料 等
3分野		組織制御 分析·解析·評 価	3.5	組織制御技術	時効・析出、熱処理、加工、加工熱処理、合金元素添加、急冷凝固、メカニカルアロイング、界面接合強さ、複合化、多層化、薄膜、積層造形、ミルフィーユ構造、コーティング、シミュレーション等
			3.6	再結晶·粒成長·集合組織	回復・再結晶、集合組織、粒成長、粒界、異相界面、双晶等
			3.7	組織観察・分析	電子顕微鏡、STM、AFM、FIM、3次元アトムプローブ、X線・中性子線回折、 EPMA、XPS、イメージング・マッピング技術、放射光 等
			3.8	計算材料科学·材料設計	理論、シミュレーション等
			3.9	新領域・その他	
	11.計算科学	構造・組織・特性・物性	11.1	計算材料科学·材料設計	計算材料科学・材料設計、第1原理電子論計算、分子シミュレーション、分子動力学法、モンテカル口法、CALPHAD法、フェーズフィールド法、有限要素法、境界要素法、セルラーオートマトン、マルチスケール解析、マルチフィジックス解析 等
		データ科学	11.2	データ科学	マテリアルズインフォマティクス、マテリアルズインテグレーション、機械学習、深層学習、強化学習、 転移学習、逆問題、データ同化、ニューラルネット、最適化、データベース、ビッグデータ、人工知 能 等
			11.3	新領域・その他	
_					

344 本 会 記 事

新分野	大分類	中分類	No	セッションキーワード	キーワード
4分野	4.力学特性	力学特性の基 礎	4.1	強度・力学特性	カ学(格子欠陥、弾性、塑性、破壊力学、有限要素法、分子動力学、マイクロメカニックス等)、転位の基本的特性(運動、増殖、相互作用等)、転位と各種格子欠陥の相互作用、変形(弾性、擬弾性、塑性、粘性、粒界、変形双晶等)、各種強化機構、破壊機構(き裂やボイド発生・成長・合体等)
			4.2	塑性・疲労・破壊	延性、靭性、静的および動的破壊、破壊靭性値、疲労、応力腐食割れ、水素脆性、 遅れ破壊、寿命
			4.3	高温変形・クリープ・超塑性	高温変形、クリーブ、クリーブ疲労、超塑性
			4.4	力学特性評価	力学特性の評価法、力学的挙動の予測(応力-ひずみ曲線、クリープ曲線等の予測、寿命予測等)、合金設計、複合材料(材料システム)設計、データベース
		力学特性と組織	4.5	欠陥と組織	転位組織、転位セル、変形帯、強加工、双晶、ボイド、亀裂
			4.6	多結晶組織	粒成長、再結晶、双晶、偏析、粒界析出、粒界反応型析出
			4.7	金属間化合物	金属間化合物、規則相、高温変形
			4.8	超微細粒組織	微細粒、バルクナノメタル、強化機構
			4.9	新領域・その他	プラストン、キンク変形、ディスクリネーション、ミルフィーユ構造
	5.材料化学	耐食性・耐酸化性	5.1	腐食・防食	水溶液腐食、電気化学測定、表面皮膜、腐食環境解析、孔食、すき間腐食、応力腐食割れ、大気腐食、高温高圧水腐食、水素脆化、異種金属接触腐食、エロージョンコロージョン、腐食事例、耐食合金、耐食コーティング、腐食抑制・防錆剤、電気防食、等
			5.2	高温酸化・高温腐食	高温ガス腐食、溶融塩腐食、水蒸気酸化、エロージョン・コロージョン、超臨界環境等、耐熱材料、耐熱コーティング、超合金、金属間化合物、 セラミックス材料、酸化物の特性
		表面·界面· 触媒	5.3	湿式表面処理・湿式めっき	電解・無電解めっき、アノード酸化、エッチング、化成処理、イオン液体、電気化学的な成膜、ぬれ性、摩擦・摩耗・潤滑等
5分野			5.4	気相プロセス・薄膜 ・厚膜作製技術	PVD、CVD、スパッタリング、プラズマプロセス、イオン注入・イオン打込み、イオンミキシング、コーティング、クラスター制御、表面処理、表面改質等、エッチング、アッシング、リングラフィー、マイクロ・トライボロジー、マイクロ・マシニング、マイクロ・ボンディング、ケミカルメカニカルポリッシング(CMP)、溶射、肉盛り、拡散浸漬処理、ぬれ性、摩擦・摩耗・潤滑等
			5.5	表界面反応・分析	表面物性・反応、表面の構造と結晶学、吸着・脱離、表面の熱・統計力学、表面の電子状態およびエネルギー・計算科学、電気化学反応、表面・界面の作製技術、表面分析法(各種化学分析・機器分析、極微量分析、極小領域分析、状態分析、プローブ顕微鏡、顕微分光、環境やプロセスのその場分析、成分画像解析等、各種分析装置の開発、化学センサー、モニタリング法等)、コロイド材料
			5.6	触媒材料·触媒反応	触媒材料(貴金属・卑金属触媒、金属間化合物触媒、ナノ構造触媒、規則性多孔体、有機金属、光触媒等)、触媒反応(酸化、水素製造、C-H活性化、クロスカップリング、界面分子変換、排気ガス浄化等)、触媒技術と反応プロセス開発、触媒理論
			5.7	新領域・その他	
	6.材料プロセ シング	環境・リサイク ルプロセス	6.1	環境・リサイクル技術	LCA、リスクマネジメント、資源経済、環境・資源政策、材料の環境信頼性評価、製造物責任、 事故解析、材料安全など、環境低負荷材料、易リサイクル材料、易リサイクル設計、易解体設 計、マテリアルセレクション、省材料設計、高寿命材料、高寿命設計など、分離プロセス、有資源 化プロセス、材料のリサイクルシステム、材料資源循環システム、リサイクル化学、クローズドプロセス、再資源化用途開発など、
		溶融・凝固プロセス	6.2	製・精錬の物理化学	資源・原料、各種および新製・精錬法、冶金熱力学、化学反応工学、移動速度論、 高温プロセス解析、数値流体力学、高純度化、分離・回収・精製、環境・リサイクル等
I 6分型)			6.3	融体・高温物性	熱力学的諸量、融体物性、モデリング等
			6.4	凝固·結晶成長·鋳造技 術	結晶成長、過冷却、非晶質、準結晶、輸送現象、高純化、鋳造、鋳物、ダイキャス ト、単結晶製造技術、半溶融加工、溶射,反応性溶射,溶射素過程,等
		固相プロセス 固相・溶接プロ セス	6.5	塑性変形・塑性加工技術	塑性加工、高ひずみ速度加工、強加工プロセス、極限環境プロセス等
			6.6	粉末・焼結・造形技術	粉体製造、超微粉、粉体成形・粉末冶金(焼結プロセスを含む)、メカニカルアロイング、焼結 合成プロセス、粉末射出成形(金属射出成形、セラミック射出成形), 3次元造形(3Dプリン ター)、コールドスプレー, スプレーフォーミング, エアロゾルデボジション, アトマイズ等
			6.7	接合·溶接·実装·接着· 複合技術	メカノケミカルプロセス、常温接合、拡散接合、超音波接合、摩擦圧接、摩擦攪拌接合、爆発圧接、電磁圧接、溶接、ろう付け、接着、精密接着、メッキ・プロセス、はんだ付け、実装、マイクロ接合、力学特性、信頼性 等
		材料評価、プロセス評価技術	6.8	材料評価技術	非破壊検査、非破壊定量評価、残留応力解析、センシング技術、信頼度評価等, 各種プロセス・シミュレーション, テラヘルツ
			6.9	新領域・その他	

新分野	大分類	中分類	No	セッションキーワード	キーワード
7分₽系	7.生体·医 療·福祉	生体材料基 礎·生体応答	7.1	細胞機能·組織再生	細胞機能、細胞間相互作用、シグナル伝達、細胞・生体組織評価、細胞増殖・分化、組織修復(Tissue Engineering)、DDS(Drug Delivery System)、ゲノム解析・編集、細胞適合性、細胞配向、代謝回転、恒常性、石灰化、各種臓器、骨・歯牙、血管、骨芽細胞、破骨細胞、OCY(オステオサイト)、骨系細胞、細胞外基質、がん、細胞小器官、RNA、DNA、遺伝子組み換え、細胞培養、骨形態計測法、染色法、足場材料、機能性タンパク質等
			7.2	構造生体機能化	機能発現、バイオメカニクス、計算科学、金属組織・組織制御、弾性・塑性変形機構、力学機能発現(弾性率、強度、延性、疲労、破壊)、スキャフォールド、インプラント、双晶変形、生体組織、組織配向性、人工関節、人工歯根、熱処理、多孔化、機能・組織評価法、Co-Cr合金、ステンレス鋼、生体用セラミックス、リン酸カルシウム系材料、PEEK、整形外科用材料等
			7.3	表界面生体機能化	生体/材料界面、表面修飾、ナノ表面・界面、感染防御・制御、表界面機能、骨伝導・骨誘導、バイオセンサー、抗菌性、タンパク質吸着、コーティング、化学処理、表面分析・評価、PVD、CVD、コーティング材料等 バイオマテリアルサイエンス、生体情報・計測、リハビリテーション医学、ユニバーサルデザ・
		生体材料設計 開発·臨床	7.4	生体・医療・福祉材料	ン、バリアフリー、生体機能代替、福祉用具・支援機器、ウェアラブル、IoT、AI、非磁性・低磁性、低弾性・高弾性、生体活性ガラス、生分解性材料、耐摩耗性材料、歯科用合金、生体用ハイエントロピー合金等
			7.5	 生体用Ti・Ti合金 	Ti・Ti合金、低弾性率、形状記憶、超弾性、オッセオインテグレーション、集合組織、人工骨・関節、相変態・組織制御、機能評価法、電子顕微鏡、β型Ti合金、ユビキタス元素、計算機シミュレーション等
			7.6	Additive Manufacturing・テーラー メード医療材料	付加製造、3Dプリンタ、金属積層造形、金属粉末、異方性/等方性、形状/組織制御、力学特性、残留応力、生体モデリング、形状計測、格子構造、薬物送達システム、マイクロマシン、マスカスタマイゼーション、テーラーメイト医療、遠隔地診療、レーザービーム、電子ビーム、順シミュレーション・逆問題解析、溶融池シミュレーション・リアルタイムモニタリング等
			7.7	生体安全性・有効性評価	医用画像・バイオイメージング、生体シミュレーション、レギュラトリーサイエンス、生体情報・計測、医療技術倫理、細胞毒性、疾病、代謝異常、骨吸収、金属アレルギー、耐食性、疲労、疾病治療、医療機器、臨床研究、臨床応用、GLP等
			7.8	新領域・その他	
		金属材料	8.1	Fe·Fe合金	Fe・Fe合金の原理・原則、鉄鋼材料、ステンレス合金、相変態(パーライト、ベイナイト、マルテンサイト、マッシブ等)、組織制御、力学特性、計算材料科学
	8.構造材料		8.2	Cu·Cu合金	Cu·Cu合金の原理・原則、配線材料、熱伝導材料、相変態、組織制御、力学特性、計算材料科学
			8.3	Ti·Ti合金	Ti・Ti合金の原理・原則、相変態、組織制御、強化機構、成型性、ゴムメタル、耐食性、表面処理、計算材料科学
		軽金属材料	8.4	Mg·Mg合金	Mg・Mg合金の原理・原則、相変態、長周期積層構造、組織制御、強化機構、キンク変形、ミルフィーユ構造、成型性、集合組織、耐食性、計算材料科学
8分野			8.5	Al·Al合金	7支/ル、コレノヤーユ神通、成室性、集合組織、IIII及性、計算が474子 Al・Al合金の原理・原則、相変態、GPゾーン、クラスター、組織制御、強化機構、成型性、集合組織、耐食性、計算材料科学
		セラミックス材料	8.6	セラミックス材料	セラミックス材料の原理・原則、相変態、構造相転移、焼結、組織制御、機能材料、 強化機構、破壊、成型性、耐熱性、計算材料科学
		而熱材料	8.7	ジェットエンジン・ガスター ビン耐熱材料	耐熱銅、起合金、耐熱合金、高融点金属、金属間化合物、セラミックス、超高温材料、金属基 複合材料、金属間化合物基複合材料、セラミックス基複合材料、ブラスチックス基複合材料、 炭素繊維強化型複合材料、SiC繊維強化型複合材料、ジェットエンジン、ガスタービン、コーティ ング、組織制御、相安定性、状態図、拡散、粒界、クリーブ、疲労、破壊、寿命予測、高温酸 化・腐食、鋳造、鍛造、粉末冶金、積層造形、熱間プロセス、計算材料科学、データベース
			8.8	蒸気発電耐熱材料	耐熱鋼、超合金、耐熱合金、蒸気タービン、コーティング、組織制御、相安定性、状態図、拡 散、粒界、クリーブ、疲労、破壊、寿命予測、高温酸化・腐食、鋳造、鍛造、粉末冶金、積層 造形、熱間プロセス、計算材料科学、データベース
			8.9	耐熱特性	耐熱合金、耐熱セラミックス、超高温材料、耐熱複合材料, コーティング、組織制御、相安定性、状態図、拡散、粒界、クリーブ、疲労、破壊、寿命予測、高温酸化・腐食、熱機関、燃焼、熱伝導、熱膨張、熱衝撃、熱遮蔽、鋳造、鍛造、粉末冶金、積層造形、熱間プロセス、計算材料科学、データベース
		機能性構造材料	8.10	機能性構造材料	アモルファス材料、金属ガラス材料、準結晶材料、制振材料、インテリジェント・スマート マテリアル、積層造形、計算材料科学
		複合材料	8.11	複合材料	複合材料、スポーツ用品材料、積層造形、接合、組織制御、トポロジー最適化、力学特性、熱特性、電磁気特性、計算材料科学
			8.12	ポーラス材料	ポーラス材料、積層造形、接合、組織制御、トポロジー最適化、力学特性、熱特性、電磁気特性、計算材料科学
			8.13	新領域・その他	
▮∪分♥∜▮	10. エネル ギー関連材料	原子力材料	10.1	原子力材料	原子炉材料、核融合炉材料、ビーム関連材料、照射損傷、照射効果
		熱電材料	10.2	熱電材料	熱電変換、熱電素子、ゼーベック効果、ペルチェ効果、熱伝導、電気伝導、など
		水素·電池関 連材料	10.3	電池材料・イオン伝導材料	電極材料、電解質材料、イオン伝導材料、電池設計、電池関連物性、など
			10.4	水素化物·水素貯蔵·水 素透過·水素関連物性	金属水素化物、錯体水素化物、水素貯蔵、水素透過、水素脆化、水素利用、水素 関連物性、機能・プロセッシング、金属 — 水素相互作用、同位体効果、など
		新領域・その他	10.5	新領域・その他	センサー材料、熱伝導材料、など

346 本 会 記 事